
1

Cheepit Sparrow System

Partial User’s Guide

A lot of additional information in the printed book and eBook at amazon

The eBook is in German now, the English version to follow soon

Partial User’s Guide translation into English – Juergen Pintaske, ExMark

Table of Contents

1 Sparrow - the first steps ... 3
1.1 The hardware .. 3

1.2 The complete SPARROW package ... 6

1.3 Circuit and example suggestions .. 8

2. Simple applications, light and sound 11
2.1 Adjustable flashing LEDs ... 11

2.2 Adjustable LED brightness .. 12

2.3 Electrostatic field sensor ... 13

2.4 Set-Reset switch .. 14

2.5 Toggle switches .. 15

2.6 Mood light function .. 16

2.7 The eternally flashing LED .. 17

2.8 The acoustic voltmeter ... 19

2.9 Mood Indicator ………………………………………....... 20

3 Sparrow Tools ... 24
3.1 Online Hex2Wav Converter ... 24

3.2 Fuse Editor .. 26

3.3 EEPROM converter .. 26

https://www.amazon.co.uk/dp/B00UG9E3W6/ref=dp-kindle-redirect?_encoding=UTF8&btkr=1

2

3.4 Sound UART ... 27

3.5 The Sound of Reset ... 29

+++++ Translated up to this point ++++++++++++++++++

4 Morse Code and Binary Telegraphy
4.1 Sparrow_TeleBin

4.2 A code lock

4.3 Sparrow memory support

4.4 Sparrow reaction test

4.5 The Sparrow Sputnik

4.6 The Sparrow Morse code Sputnik

4.7 Sparrow Morse code Memory

5 micro-TPS for Sparrow
5.1 Sparrow_TPS1

5.2 Sparrow_TPS2

5.3 The Sparrow Bot

6 Sparrow apps with four-bit displays
6.1 Up / Down Counter 0 ... 15

6.2 Sparrow timer - up to four hours

6.3 The Sparrow LED Voltmeter

6.4 Measuring range switching

7 Sparrow peripherals and sensors
7.1 Sparrow_TouchB4

7.2 Sparrow Light Alarm

7.3 LED light with IR remote control

7.4 The Sparrow Sleep Radio

Some Links and further information (mostly in German for now)

http://tiny.systems/categorie/cheepit

http://www.elektronik-labor.de/AVR/Sparrow/Cheepit.html

http://www.elexs.de/Sparrow1.html www.ak-modul-
bus.de/stat/entwicklungssystem_sparrow.html

http://www.elektronik-labor.de/Lernpakete/TPS/TPS0.html

Burkhard Kainka, Basiskurs BASCOM-AVR , Elektor 2011

AVR Basic Software download – the free limited version

https://www.mcselec.com/index.php?option=com_docman&task=doc_downl
oad&gid=139 v5_partial_A5

http://www.elektronik-labor.de/AVR/Sparrow/Cheepit.html
http://www.ak-modul-bus.de/stat/entwicklungssystem_sparrow.html
http://www.ak-modul-bus.de/stat/entwicklungssystem_sparrow.html
https://www.mcselec.com/index.php?option=com_docman&task=doc_download&gid=139
https://www.mcselec.com/index.php?option=com_docman&task=doc_download&gid=139

3

1 Sparrow - the first steps

Cheepit is a system for programming microcontrollers via the sound output of
mobile Terminals. The left and right channels on the headphone output are
used as a data and clock lines for ISP programming. Using this technique allows
for programming microcontrollers without a PC.

This is particularly interesting for beginners and for education, because the
familiar hardware like a Smartphones and a tablet can be used. Small programs
(apps) are loaded directly (or saved locally) from the network location at
http://tiny.systems/category/cheepit/ into the controller. Additionally, any
software programs developed by a user can be easily shared with others.

1.1 The hardware

Unlike in a usual design situation, there is no need for additional programming
hardware, a mobile device with a web browser application is sufficient. Even
the programming via an MP3 file or via ringtones is possible. This system is
therefore also suitable for those applications where new programs have to be
loaded while out and about.

www.ak-modul-bus.de/stat/entwicklungssystem_sparrow.html

The Sparrow uses a controller from the Microchip AVR family, the ATtiny13a
with 1K Flash and eight pins. Two LEDs and two Pushbutton switches are part
of the microcontroller system and located next to the programming interface.
Thus, this small system becomes an uncomplicated and versatile device.

http://tiny.systems/category/cheepit/
http://www.ak-modul-bus.de/stat/entwicklungssystem_sparrow.html

4

The circuit diagram can be sliced vertically into 6 blocks:
Audio Inputs plus power connections – Signal Conditioning – Comparators
Microcontroller – 8 Pins on Connectors – 2 Switch Inputs / 2 LED Outputs.

The circuit on the right shows the actual microcontroller system with the
ATtiny13a and the operating elements. The programming interface is located on
the left. A quad-comparator LM339, filter, and limiter ensure, that the
programming works in the wide range of possible input levels. A programming
signal puts the microcontroller into the reset state and drives the lines MOSI and
SCK. The successful programming feedback is indicated by a signal at MISO and
thus by the flickering of LED1 (green). Additional External access to the
controller pins is provided via the 2x 4 pins using headers or wires soldered
directly to the board.

For first tests without any additional external hardware it is useful to solder in a
six-pole angled connector. The operating voltage is then fed via these pins and as
well the audio signals are coming in via the same header. The lower three
connections (JP4: L GND R) are connected to a male headphone plug or
optionally to the female version.

Carful: The left and right channel must be connected correctly: on the male
version, the first contact (tip) is the left channel.

5

The operating voltage can as a first choice come from a battery holder for two
Mignon (AAA) with a total voltage of 3 V. The upper three connections on the
board are used to supply the microcontroller only (+VCC, connection V of JP3)
and separately the programming interface (+VCC2, connection + of JP3) with
the common SNG connection (Ground of PJP3). A complete kit with all
required plugs and additional components can be ordered at www.ak-
modulbus.de.

There is already a large collection of ready-made apps that can be found at
(http://tiny.systems/category/cheepit/). Most of these small programs were
developed in Bascom, some in Assembler and C. But for the user it is for
download and use. Click and Transfer is sufficient. But the source texts are
available as well.

There is a light and a dark Cheepit button (positive and negative) . If you hold
the mouse pointer above it for a longer time, a note regarding the inversion
appears. The dark button starts the inverted transmission and matches the
Sparrow. A non-inverted transmission is required for alternative circuits, which
are presented in chapter 10.

.

For own software development only the basic circuit of the actual
microcontrollers.

http://www.ak-modulbus.de/
http://www.ak-modulbus.de/
http://tiny.systems/category/cheepit/

6

Two buttons and two LEDs are already sufficient to solve many application
requirements, from model circuits to digital electronics and to practical devices
for home and hobby.

In many cases, a Sparrow can also serve as a central control unit for other
electronics projects. B1 and B3 are the preferred outputs, where the output
status is indicated by the LEDs at the same time. B4 can be used as analog
input ADC2. All five port pins are programmable to be used as inputs or as
outputs.

1.2 The complete SPARROW Package

If you want to avoid any soldering and would like to start with a prepared set
of parts you can order the complete kit package.

All pin headers are already soldered in, and the connection cables (audio and

battery compartment) are prepared.

You can get started right away. The battery compartment has built-in sliding

switch, so you can leave the power supply wires connected.

The most important components for your first experiments are included.

7

www.ak-modul-bus.de/stat/komplettpaket_sparrow.html

Kit contents:

* Sparrow development system with header pins (down) soldered in

* 6 pin header with audio cable soldered on

* Battery box for 2 AA Mignon cells and with switch

* Solderless Breadboard with 270 connections

* 3 LEDs 5mm in red, green and yellow

* Piezo sounder

* NTC 10 kΩ

* Photo transistor ELPT333-3C

* 4 resistors

* 1 capacitor 100µF

* 1 push button switch

* 6 board connection cables

* 1m insulated wire

If you own a separate Sparrow already, the additional component set is available

as well, but then only the standard battery box without switch is available.

8

The additional components of this kit have been selected to cover most of the

examples described here.

www.ak-modul-bus.de/stat/bauteileset_fuer_den_sparrow.html

1.3 Circuits and example suggestions

This chapter suggests, how this material can be connected. A very popular and

easy to understand exercise at school is the development of a basic traffic light

control. The three traffic light LEDs are connected to the ports via a series

resistors, and the red and green LEDs on the Sparrow board will light up as

well.

9

The “request contact” is connected to B0 and thus in parallel to S1 of the
Sparrow system. So, you have as a first step a setup as in the realistic situation:
the control computer has its own display and controls. In a switch box at the
road side you can find it in the same way. The engineer can press S2 during
maintenance work to switch the system into an emergency mode with a
flashing yellow lamp. This function would also be a useful expansion of the
program.

The availability of sensors opens up many new possibilities:

The existing NTC temperature sensor and the Photo transistor as light sensor
are used in the same way as part of voltage divider.

The input B4 (ADC) is still unused and suitable as sensor input. A rising
temperature or a rising brightness level is then detected as a rising voltage. In
special cases, B3 can also be used as a sensor input, where the on-board red
LED indicates the sensor current.

The piezoelectric transducer can be used in both directions: either as a

loudspeaker or as a sensor. Port B2, which also serves as a PWM output, is

10

suitable for sound output. A ready-made app for this functionality is the

acoustic voltmeter (http://tiny.systems/category/cheepit/Voltmeter.html).

The use of the piezo transducer as a motion or vibration sensor, or even as a
microphone, it must be connected to an AD input. This could be the open
input ADC2 (B4) or the input B3 connected to the internal red LED. The
LED can help to set a medium voltage level, e.g. if the pull-up is switched on
and thus a small current is preset. In this case, the sensor would show an
increased lower frequency limit, while connected to ADC2 could also show
very slow changes.

The 100 μF electrolytic capacitor can be used for many different experiments.
For example, to model a control loop. A program would control B3 in such a
way that a defined voltage U at the capacitor is set as precisely as possible, and
U is adjusted using the 2 pushbutton switches.

A completely different application could be the voltage supply of the Sparrow

from this 100 μF capacitor and the design of an extremely energy-saving

application. One example of this is the "eternal flasher", which can be found at

http://tiny.systems/category/cheepit/EwigerBlinker.html. This example could

be improved, if a larger resistor is used in line with the LED at output B4. This

could be an interesting competition in a learning group: Who can run a Sparrow

system most economically and can reach the longest operating time with just one

capacitor charge.

http://tiny.systems/category/cheepit/Voltmeter.html
http://tiny.systems/category/cheepit/EwigerBlinker.html

11

2 Simple applications, light and sound

The following first application examples will not need any external hardware in

addition to just the Sparrow board. These programs were developed using

Bascom, and the source code is printed here as well. This allows you to easily

get an understanding and to get inspired for your own applications. Bascom

can be downloaded for free at http://www.mcselec.com/ . This then will be a

test version limited to 4 KB code and is particularly suitable and sufficient for

an easy introduction to microcontroller programming.

2.1 Adjustable flashing LEDs

The two LEDs flash alternatively. The flashing speed is adjusted via the 2

buttons. Using S1, the flashing becomes faster, with S2 slower. All four control

elements of your Sparrow have then been tested.

http://tiny.systems/categorie/cheepit/EinstellbarerGegentaktblinker.html

'Sparrow_blink2.bas
$regfile = "attiny13.dat"
$crystal = 1200000
$hwstack = 8
$swstack = 4
$framesize = 4
Config Portb = &B000011010
Dim T As Byte
Dim N As Byte

Led1 Alias Portb.1
Led2 Alias Portb.3
S1 Alias Pinb.0
S2 Alias Pinb.2

Led1 = 1
Led2 = 0
T = 20
Do
 N = 0
 Do

http://www.mcselec.com/
http://tiny.systems/categorie/cheepit/EinstellbarerGegentaktblinker.html

12

 If S1 = 0 Then T = T + 1

 If T > 250 Then T = 250
 If S2 = 0 Then T = T - 1
 If T < 1 Then T = 1
 Waitms 10

 N = N + 10
 Loop Until N >= T
 Toggle Led1
 Toggle Led2
Loop

End

2.2 Adjustable LED brightness

The green LED1 can be controlled via the PWM output PWM0B of the

Tiny13a. The following test program allows you to adjust the LED brightness

via the 2 buttons.

http://tiny.systems/categorie/cheepit/EinstellbareLEDHelligkeit.html

'Sparrow_PWM.bas
$regfile = "attiny13.dat"
$crystal = 1200000
$hwstack = 8
$swstack = 4
$framesize = 4
Config Portb.1 = 1
Dim D As Byte

Led1 Alias Portb.1
Led2 Alias Portb.3
S1 Alias Pinb.0
S2 Alias Pinb.2

Config Timer0 = Pwm , Prescale = 8 , Compare B Pwm =

Clear Up

D = 50
Do

http://tiny.systems/categorie/cheepit/EinstellbareLEDHelligkeit.html

13

 If S1 = 0 Then D = D + 1 If D > 254 Then D = 254
 If S2 = 0 Then D = D - 1
 If D < 1 Then D = 1
 Waitms 10

 Pwm0b = D
Loop
End

2.3 Electrostatic field sensor

If the red LED2 is not used and ports B3 and B4 are set to high impedance, one

then ADC3 is an extremely sensitive analog input. A piece of wire, 5 cm long, is

sufficient for B3 to function as an antenna, to measure the electric field and to

display it via the PWM output.

With the Sparrow in your the hand, you can for example walk over a carpet and

look directly at the electric charge at each step showing the brightness on the

green LED.

http://tiny.systems/categorie/cheepit/ElektrofeldSensor.html

'Sparrow_ADC.bas

$regfile = "attiny13.dat"
$crystal = 1200000
$hwstack = 8
$swstack = 4
$framesize = 4

Dim D As Integer
Ddrb = 2

Config Adc = Single , Prescaler = Auto
Start Adc
Config Timer0 = Pwm , Prescale = 8 , Compare B Pwm =

Clear Up

Do

 D = Getadc(3)
 D = D / 4
 Pwm0b = D

http://tiny.systems/categorie/cheepit/ElektrofeldSensor.html

14

 Waitms 18
Loop
End

The program contains a delay of 18 milliseconds, so very close to the period of

20 ms of a 50 Hz power line. All 50 Hz signals are therefore slowed down and

are clearly displayed on the green LED. If the antenna is approached with a

land, then the amplitude of the AC voltage rises clearly.

Even power cables in the wall can be tracked using the Sparrow!

This program is almost as useful as a small oscilloscope. As well it can be used

for voltage measurements, as long as the measuring voltage is not greater than

the Sparrow operating voltage.

For safety, a 10 kΩ protective series resistor should be placed in the measuring

cable to the measurement point. Most measuring instruments show the DC

value only and thus suppress any superposed alternating voltages. But our

sparrow shows these AC voltages.

2.4 RS Switch

An RS flip-flop has two inputs, one for switching on (Set) and one for

switching off (Reset). This example works just like this. S2 turns both LEDs on

and S1 turns them off.

http://tiny.systems/categorie/cheepit/RSSchalter.html

'Sparrow_RS.bas on/off LEDs
$regfile = "attiny13.dat"
$crystal = 1200000
$hwstack = 8
$swstack = 4
$framesize = 4
Config Portb = &B000011010
Dim T As Byte
Dim N As Byte

Led1 Alias Portb.1
Led2 Alias Portb.3 S1 Alias Pinb.0 S2 Alias Pinb.2

http://tiny.systems/categorie/cheepit/RSSchalter.html

15

Led1 = 1
Led2 = 1
T = 20
Do
 If S1 = 0 Then
 Led1 = 0
 Led2 = 0
 End If
 If S2 = 0 Then
 Led1 = 1
 Led2 = 1
 End If Loop
End

2.5 Toggle switches

The function of this app corresponds to two separately implemented toggle

flipflops. Press switch once => On, press the same switch again => Off.

And this works in the same way for both buttons, and each switch with its own

LED.

http://tiny.systems/categorie/cheepit/ToggleSchalter.html

'Sparrow_Toggle.bas on/off LEDs
$regfile = "attiny13.dat"
$crystal = 1200000
$hwstack = 8
$swstack = 4
$framesize = 4
Config Portb = &B000011010
Dim T As Byte Dim N As Byte

Led1 Alias Portb.1
Led2 Alias Portb.3
S1 Alias Pinb.0
S2 Alias Pinb.2

Led1 = 1
Led2 = 1
T = 20
Do
 If S1 = 0 Then

http://tiny.systems/categorie/cheepit/ToggleSchalter.html

16

 Toggle Led1
 Waitms 50
 Do
 Loop Until S1 = 1
 Waitms 50
 End If
 If S2 = 0 Then
 Toggle Led2
 Waitms 50 Do
 Waitms 50
 Loop Until S2 = 1
 End If Loop
End

2.6 Mood light function

The green LED is dimmed slowly via the PWM output and then blown again.

The speed is adjustable via the buttons. Since the eye does not have a linear

feeling for the brightness, a parabola function is implemented here by squaring

a run variable.

http://tiny.systems/categorie/cheepit/Entspannungslicht.html

'Sparrow_Fade.bas
$regfile = "attiny13.dat"
$crystal = 1200000
$hwstack = 8
$swstack = 4
$framesize = 4
Config Portb.1 = 1
Config Portb.3 = 1
Config Portb.4 = 1
Dim T As Byte
Dim I As Byte
Dim J As Byte
Dim N As Byte
Dim D As Word

Led1 Alias Portb.1
Led2 Alias Portb.3

http://tiny.systems/categorie/cheepit/Entspannungslicht.html

17

S1 Alias Pinb.0
S2 Alias Pinb.2

Config Timer0 = Pwm , Prescale = 8 , Compare B Pwm =

Clear Up

N = 50
T = 5
J = 0
Do
 Waitms 10
 I = I + 1
 If I >= T Then
 'Toggle Led2
 If S1 = 0 Then T = T + 1
 If T > 20 Then T = 20
 If S2 = 0 Then T = T - 1
 If T < 1 Then T = 1
 I = 0
 If J = 0 Then N = N + 1
 If N > 250 Then J = 1
 If J = 1 Then N = N - 1
 If N < 50 Then J = 0
 D = N * N
 D = High(d)
 Pwm0b = D
 End If
Loop
End

2.7 The eternally flashing LED

The eternal light beacon has been around forever. Sometimes as pure
electronic circuit and sometimes using a microcontroller-Application "The
ELO-Flasher". Now it has come to the Sparrow. The main goal is extreme
power saving.

The Sparrow produces a repeating flash on the green LED, but switches itself
during the off cycle into sleep mode and then needs hardly any current. The
watchdog timer function of the Tiny13 triggers the wake up. The Sparrow
board was operated here via a storage Supercapacitor of 0.1 F, 5.5 V.

18

Once charged to 5V, it flashes for one to two hours. The Sparrow is actually so
small including this power supply, that you can attach it to your T-shirt. The
picture shows the size of such a capacitor.

http://tiny.systems/categorie/cheepit/EwigerBlinker.html

'ATtiny13 Sparrow Lowpower Flash - Ewiger Blinker
$regfile = "attiny13.dat"
$crystal = 1200000
$hwstack = 8
$swstack = 4
$framesize = 4
Config Portb = 2

Led1 Alias Portb.1
Led2 Alias Portb.3

Config Watchdog = 1024
Start Watchdog

Led1 = 1
Waitms 10
Led1 = 0
Powerdown
End

http://tiny.systems/categorie/cheepit/EwigerBlinker.html

19

2.8 The acoustic voltmeter

Very often it is quite difficult to keep an eye on where the measurement cables

touch, and to look at the voltmeter at the same time. What you need is an

acoustic voltmeter. A piezoelectric transducer (or a dynamic loudspeaker) is

connected to output B1 via a protective series resistor.

The voltage measured is converted into a frequency by the processor. At zero

volts, there is silence so a sound does not bother us all the time. The

measurement input is ADC3 (B3), and the sound output is B1. The sound

signal is generated using PWM0B. This timer is set to a fixed dividing factor,

but the frequency is changed via the osc_cal register This means that the

internal RC oscillator of the Tiny13 is tuned and thus the entire processor clock

frequency. At the input, a protective resistor of 10 k is suggested protecting

against overvoltage, and a resistor of approx. 100 k from the input to GND to

make sure that open measuring cables do show a no voltage input.

http://tiny.systems/categorie/cheepit/Voltmeter.html

'Sparrow_ADCsound.bas
$regfile = "attiny13.dat"
$crystal = 1200000
$hwstack = 8
$swstack = 4

http://tiny.systems/categorie/cheepit/Voltmeter.html

20

$framesize = 4

Dim D As Integer
Ddrb = 2 'Sound Output
B1

Config Adc = Single , Prescaler = Auto
Start Adc
Config Timer0 = Pwm , Prescale = 8 , Compare B Pwm =

Clear Up

Do
 D = Getadc(3) 'Voltage Input B3
 D = D / 10
 Osccal = D
 If D < 1 Then Pwm0b = 0 Else Pwm0b = 40
 Waitms 18
Loop
End

2.9 Mood Indicator

Interpersonal relationships are based on clear communication signals. But it is

not always easy to find the right words. Sparrow can help here. It acts as a kind

of mood traffic light and makes phrases such as "Leave me alone" unnecessary

to be said.

After starting, the Sparrow just flashes slowly and signals it is ready. The user
then selects the current stress or relaxation level using the two buttons (up /
down). What exactly such a frequency means in each case, has to be agreed
obviously.

For example, it could look as follows:

Mode 1: Double flashes red / green: Maximum stress, best not talk to

Mode 2: Single flashes red / green: Strongly loaded, head not clear yet

Mode 3: Double flash red: Trying to relax

Mode 4: Single flashes red: Rather relaxed, everything easy

Mode 5: Single flashes green: Ready for new actions

Mode 6: Double flashes green: Under full power - Let's go!

http://tiny.systems/categorie/cheepit/Stimmungsindikator.html

http://tiny.systems/categorie/cheepit/Stimmungsindikator.html

21

'ATtiny13 Sparrow Blink3.bas
$regfile = "attiny13.dat"
$crystal = 1200000
$hwstack = 8
$swstack = 4
$framesize = 4
Config Portb = &B000011010
Dim T As Byte
Dim N As Byte
Dim M As Byte
Led1 Alias Portb.1
Led2 Alias Portb.3
S1 Alias Pinb.0
S2 Alias Pinb.2

Do
 If S2 = 0 Then
 Waitms 50
 If M < 6 Then M = M + 1
 Do
 Loop Until S2 = 1
 Waitms 50
 End If
 If S1 = 0 Then
 Waitms 50
 If M > 1 Then M = M - 1
 Do
 Loop Until S1 = 1
 Waitms 50
 End If

 If M = 0 Then 'Standby
 Led1 = 1
 Waitms 10
 Led1 = 0
 Waitms 500
 End If

 If M = 1 Then 'very busy
 Led1 = 1 : Led2 = 1 Waitms 30
 Led1 = 0 : Led2 = 0
 Waitms 100
 Led1 = 1 : Led2 = 1
 Waitms 30

22

 Led1 = 0 : Led2 = 0
 Waitms 840 End If

 If M = 2 Then 'busy
 Led1 = 1 : Led2 = 1
 Waitms 30
 Led1 = 0 : Led2 = 0
 Waitms 970
 End If

 If M = 3 Then 'relaxing
 Led2 = 1
 Waitms 30
 Led2 = 0
 Waitms 100
 Led2 = 1
 Waitms 30
 Led2 = 0
 Waitms 840
 End If

 If M = 4 Then 'relexed
 Led2 = 1
 Waitms 30
 Led2 = 0
 Waitms 970
 End If

 If M = 5 Then 'ready
 Led1 = 1
 Waitms 30
 Led1 = 0
 Waitms 970
 End If

 If M = 6 Then 'go
 Led1 = 1
 Waitms 30
 Led1 = 0
 Waitms 100
 Led1 = 1
 Waitms 30
 Led1 = 0

23

 Waitms 840
 End If
 Loop End

24

3 Sparrow tools

If you write code for microcontrollers on a PC, you usually have a compiler

running on the PC and a programming device connected via USB. Often you use

a bootloader on the controller, where the target system can program itself using

downloaded data. In either case, however, a PC with a suitable interface

connection is needed, e.g. an RS232 serial interface or a USB port.

Sparrow works differently. You do not need a programming device because the

necessary hardware is already available on the Sparrow board. USB or RS232

connection is also not necessary either, as the programming data is transmitted

by the sound card – or more precisely via the headphone output. A special

programming software is also not necessary, as an Internet browser is sufficient

to download the data from a remote location on the Internet. One click is

enough, and then the selected sound file is transferred.

So easy it is really, if prepared apps are downloaded. But what, if you want to

develop your own code? Then you will need an assembler Program or a compiler

that creates the required Hex File for programming the chip. This Hex File can

be converted online by uploading there converted into the relevant sound file

and transferred back immediately for programming.

3.1 Online Hex2Wav Converter

Finished apps are great and quick to use. But how does it help if you could only

use ready-made apps? This will get boring quickly. For this reason, the code

generator for the ATtiny13a was opened up and converted into a small

WebApp. With this application, you can now load any program onto the

controller, regardless of the compiler used.

25

This converter is very easy to use.

The following instructions are valid for a Tiny13 outside a Sparrow system.

The Sparrow system does not need to press the reset button manually:

• Select a file (please a valid .hex file for AVR ATtiny13a or ATtiny13)

• Connect the circuit

• Set the volume control to maximum

• Pull the RESET line to ground and keep it there

• Press "Upload" on the Webapp

• Wait until the program has been transferred (flashing)

• Remove the RESET line from the ground

If the programming fails, please check the following:

• Check the volume setting

• Re-initiate a reset

• Press the Play button on the embedded Player.

26

SoundProgrammer

Select Hex File (search) Sparrow_TPS4.hex

(ticked) invert signal

Upload

Our Sparrow expects the setting "Invert Signal". Non-inverted signals can be

used to program a Tiny13 with just two resistors and a reset button (see chapter

10.2 in the eBook).

If you listen carefully, you can hear a kind of preamble in this sound file. It is

used to put the Sparrow into the reset state. The Sparrow system has a matching

reset circuit. This is the real reason why you can program the chip by just using

two lines. If you use the well-known ISP interface for AVR controllers, then you

know the six-wire connection: MOSI, MISO, SCK, Reset, GND and VCC.

27

MISO is omitted here, while MOSI (left channel) generates the at the same time

the reset signal and the right channel provides the SCK signal.

3.2 Fuse Editor

The Fuse Editor allows for programming the Low and High Fuse of the

Sparrow / ATtiny13a. Attention! When changing the fuses, you should really

know exactly what the effects are. The controller may then no longer be able

to be programmed anymore if there are incorrect settings.

3.3 EEPROM Converter

The EEPROM Converter of the Sparrow can be used to modify the 64 bytes

of the EEPROM memory. Simply select an EEPROM image (.eep file) and

upload it in the same way as with the sound converter.

The program memory of the Sparrow (ATtiny13a) remains unaffected when

modifying the EEPROM. If there is a project using a flash image (.hex) and an

EEPROM image (.eep), then the flash memory must be programmed first

(using the sound converter), and then afterwards the EEPROM.

28

EEPROM Converter

Select .epp File to upload(search) No file selected

(ticked) invert signal
Upload

3.4 Sound UART

The Sound UART interface gives Sparrow the option to receive serial data

(RS232) via the sound output of the connected device (smartphone, tablet or

PC). The left audio channel is used for this transmission method (PB2 / Clock

line of the Programming Interface). The converter can be used to convert any

byte values. This method provides the microcontroller with a true serial signal

at TTL level.

29

Sound UART
Baud Rate 300 Byte: 0x 55 (tick) Invert Signal

Cheepit

Only the left channel is used during transmission.
The right channel (reset / data line) remains unchanged.

This allows data transfer to PB2 during operation.

The preset transfer rate is 300 Baud with 8 data bits, no parity and one stop bit.

The sound data are generated using a sampling rate of 44100 Hz. Based on this

fact, a theoretically possible Baud rate of max. of 22050 could be achieved.

During the conversion process however, rounding errors occur due to the

fixed sampling rate. This error can be calculated. If the sampling rate is directly

divisible by the set baud rate, there is no deviation.

3.5 The Sound of Reset

The trick is to address only the MOSI line, but not the SCK line. Then a reset

is executed without transmitting a new program.

http://tiny.systems/categorie/cheepit/Reset.html

TINY SYSTEMS article apps search window - tiny systems
The Sound of Reset.
 by Thomas Baum

http://tiny.systems/categorie/cheepit/Reset.html

30

If you look at is seriously, the “Sound Of Reset” is not really an app. The
Program Flash memory stays unchanged. Here, only the Reset sequence is
played. Using the push buttons, a Reset can be executed without interrupting the
Power Supply.

++++++++++++++ end of current translation +++++++++++++++

Links and further information at

http://tiny.systems/categorie/cheepit

http://www.elektronik-labor.de/AVR/Sparrow/Cheepit.html

http://www.elexs.de/Sparrow1.html www.ak-modul-
bus.de/stat/entwicklungssystem_sparrow.html

http://www.elektronik-labor.de/Lernpakete/TPS/TPS0.html

Claus Kühnel, Programmieren der AVR RISC Mikrocontroller mit BASCOM-
AVR 2010

Burkhard Kainka, Basiskurs BASCOM-AVR , Elektor 2011

The software used for this project is Bascom

https://www.mcselec.com/index.php?option=com_content&task=view&id=14
&Itemid=41

Bascom download of free limited 4K version

Link and text from there:

https://www.mcselec.com/index.php?option=com_docman&task=doc_downlo
ad&gid=139

You are about to download the FREE DEMO version of BASCOM.
The DEMO is fully functional and can compile up to 4KB.
The software has been tested with 40 different virus scanners.
There is no malware, toolbar or other annoying software

included.
When you use a free or bad virus scanner, you might get a false

warning. Most free scanners deliberately give false warnings to
give the user the idea that the software is working and you do

not forget about it.
You can always test the software at virustotal.com
And you should send an email to your virus software creator to

inform them about the false positive.
In case you have problems installing : update your virus

software or deactivate it.

Translation: Juergen Pintaske, ExMark June 2017 version v6_partial_A5

http://www.elektronik-labor.de/AVR/Sparrow/Cheepit.html
http://www.ak-modul-bus.de/stat/entwicklungssystem_sparrow.html
http://www.ak-modul-bus.de/stat/entwicklungssystem_sparrow.html
https://www.amazon.de/Programmieren-AVR-RISC-Mikrocontroller-BASCOM-AVR/dp/3907857143
https://www.amazon.de/Programmieren-AVR-RISC-Mikrocontroller-BASCOM-AVR/dp/3907857143
https://www.mcselec.com/index.php?option=com_content&task=view&id=14&Itemid=41
https://www.mcselec.com/index.php?option=com_content&task=view&id=14&Itemid=41
https://www.mcselec.com/index.php?option=com_docman&task=doc_download&gid=139
https://www.mcselec.com/index.php?option=com_docman&task=doc_download&gid=139

